
Inr. 3. Heat Moss Transfer. Vol. 14, pp. 177-184. Pergamon Press 1971. Printed in Great Britain 

EVAPORATION OF A SOLID INTO VACUUM 

A. V. LUIKOV, T. L. PERELMAN and S. I. ANISIMOV 

Heat and Mass Transfer Institute, Minsk, USSR 

(Received 9 August 1968) 

AHHOTaqHsI--PaCCMaTpllBaeTCR BOllpOC 0 KOppWTHOiz IlOCTaHOBHe IlpOC,JIf3MbI 06 RCIIapf3HMH 

Tsepnoro Tena 3 saHyyM Onpeneneabr xapawrepmmm, onhicbmam~~~e mcnapeme. 
noKa3aH0, wo npa HeHoTopbIx pelfFmRbIx napaMeTpax cltopowb ncnapemm onpeze- 

nHeTcn HCTAHHOI~ HmeTmoji @a30Boro npe3palueHw (wep;loe Teno-nap). IIpn 3~0~ nhfeeT 

MecTo BonHapaspeXeHsn, Ha @powre ~0TopoW nponcxofiaT nepeHacbrwesae napa.JJannerrHe 

napa Ha noBepxilocTn Tena Melibtne nacbwlewtoro napa nprz AaHHoti TeMnepaType Tena. 

NOMENCLATURE 

thermal conductivity ; 
thermal diffusivity, a = Rjc,p ; 
time ; 
vapour concentration, w = m.m; 
density = m.n ; 
mass of a molecule ; 
number of molecules per unit volume, 
that is density of vapour molecules or 
concentration of molecules ; 
saturation vapour pressure at T,; 
vapour pressure near a solid surface ; 
distribution function ; 
Boltzmann constant ; 
temperature [OK] ; 
velocity of molecules ; 
ratio of vapour heat capacity at 
constant pressure to that at constant 
volume ; 
vapour density ; 
mean free path of vapour molecules ; 
specific heat flux. 

1. THE FORMULATION OF A CONJUGATED 
PROBLEM IN EVAPORATION 

FOR THE basic quantities in evaporation of a 
solid, such as the evaporation rate, temperature 
of a gas and solid, momentum of an expanding 
gas, etc to be calculated, it is necessary to solve 
three interconnected problems: the problem of 
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heat conduction in a solid, the hydrodynamic 
problem of vapour motion and the kinetic 
problem of boundary conditions at the evapora- 
tion front which relates the first two. 

In the majority of the works devoted to the 
problem under consideration usually one of 
these problems is being solved, and instead of 
solving the two remaining ones assumptions in- 
sufficiently substantiated are as a rule made 
which appear either incorrect or correct in some 
limiting cases. For example, a temperature 
distribution within an evaporating solid is 
frequently found by solving the Stefan-type 
problem without regard for the kinetics of phase 
transition and the phenomena in a gaseous 
phase. Obviously this is valid only when the rate 
of a process is controlled by heat conduction, 
and internal vapour energy is small in com- 
parison to the heat of evaporation. In some 
works [l-4] such a statement of the problem is 
somewhat improved by the fact that evaporation 
kinetics and total enthalpy jump at the interface 
are taken into account. 

In those cases when the evaporation rate is 
mainly of interest the mass flow from a solid 
phase into a gaseous one is usually given by 
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where p,,(T’,) is the saturation vapour pressure 
at a temperature T, ; p and T are the pressure 
and temperature of the vapour near the solid 
surface, respectively; and the subscript “0” 
denotes the solid phase. In addition to the fact 
that equation (1) is incorrect, it is not clear, to 
what point in the gas the values of T and p 
should be referred. 

In fact, the process of liquid evaporation 
consists not only of a vapour transfer process 
but also of the process of phase change (true 
kinetics of phase transition). Usually with liquid 
evaporation at atmospheric pressure the rate of 
kinetics of phase transition is neglected (it is 
considered infinitely large as compared to the 
vapour transfer rate). The diffusional vapour 
transfer rate is determined by Fick’s diffusion 
law which for steady mass flow may be written as 

D 
,j = DVw = b (0, - om) = a,,,(~, - 0,) (2) 

where a, is the mass-transfer coefficient (c(, 
= D/6); 6 is the reduced thickness of a boundary 
layer; D is the vapour diffusion coefficient. 

Liquid evaporation is a dynamic process ; 
vapour molecules not only leave a liquid surface 
but also return to it and partially condense. The 
amount of liquid evaporated is the difference 
between the amount of the molecules which left 
the surface and that of molecules returned from 
the ambient medium. 

Let the accommodation coefficient of mole- 
cules be denoted by A. It characterizes the 
probability of the molecule condensing on 
striking the surface. Then, the amount of mole- 
cules condensing on the liquid surface will be 
a Anti where n is the number of molecules per 
unit volume and ii is the mean thermal velocity 
of vapour molecules. 

Assuming that the amount of molecules con- 
densed at the surface is equal to that returned 
to the surface as a result of diffusion, the follow- 
ing equation is obtained 

j, = $Anmu = c&(0, - c0,) = +Ao,fi (3) 

where m is the mass of vapour molecules and o 
is the concentration (w = m n). 

From equation (2) it follows 

where k* is the proportionality factor between 
,j,,, and o, and is equal to 

1 1 1 
-= k* <+m 

From equation (6) it follows that the total 
resistance (l/k*) is equal to the sum of the 
diffusional resistance (l/a,) and the kinetic 
resistance (l/@i). 

If the diffusional resistance is greater than the 
kinetic resistance (l/a, $ l&G’i or $4ii B cx,,,), 
then from equations (4) and (5) it follows 

.i, = ww, 

i.e. the rate of condensation and, consequently, 
of evaporation is determined by the rate vapour 
(by diffusion) since cx, = D/c5 If the diffusional 
resistance is considerably less than the kinetic 
resistance (l/a,,, < l&AC or $Aii 4 a,), then we 
have 

WS = Om, k* = +tii (8) 

,j, = aAiiw, (9) 

i.e. the rate of condensation (evaporation) is 
determined by that of phase change of liquid 
into vapour. 

Let the diffusion Nusselt number be denoted 
by Nu, and the Knudsen number by Kn 

where I is the characteristic dimension (length of 
a liquid surface along a gas flow), and ;I is the 
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mean free path of vapour molecules. Then, 
taking into account the fact that the diffusion 
coefficient is proportional to the product iiA 
(D = Tii;l where r is a numerical coefficient 
r < 1) it may be written 

j, = k*o, = (l,rNu;Y+ (l/$4) 

z ~._. 
riiw, 

(l/Nu,Kn) + (l/A) 
= rk**iiw 

c0 
(11) 

since, to a first approximation, it may be 
assumed that r z $. The total resistance (l/k**) 
is equal to 

1 

-=&+f. k** 
(12) 

The diffusional resistance (l/lVu,. Kn) is in- 
versely proportional to the product of the 
Nusselt and Knudsen numbers (Nu, Kn). 

Under ordinary conditions of liquid evapora- 
tion at atmospheric pressure the Knudsen 
number is small (Kn 4 l), the Nusselt number 
being small as well. Then, the diffusional 
resistance (l/N&. Kn) is large in comparison 
to the kinetic one (l/A), and the rate of evapora- 
tion is determined by the vapour transfer process 
[See equation (2)]. 

However, with evaporation into vacuum the 
Knudsen number Kn sharply increases (Kn v l), 
therefore, in some evaporation regimes the 
diffusional resistance becomes smaller than the 
kinetic one (Nu, Kn 9 A), and the evaporation 
rate is determined by the rate of phase transition 

,i z TAiio, = TAiio,. (13) 

Sometimes when studying evaporation under 
the action of an energy flux, the temperature 
jump at the interphase boundary is neglected, 
although it is clear that in such a case there 
should be no energy flow from one phase into 
another. 

Since the problem on evaporation of a solid is 
important in practice, it is of interest to consider 
it in a more precise form than has been done 
hitherto. In the present section an attempt is 

made to analyse this problem. Subsequent con- 
sideration of the problem allows us to find some 
qualitative peculiarities of the process. which 
are usually omitted in the simplified considera- 
tion The relations obtained may be further used 
for treating extensive experimental data on 
evaporation. 

2. GAS DYNAMIC PROBLEM AND 
BOUNDARY CONDITIONS 

The problem is started by considering the 
simplest part of the general problem on evapora- 
tion in vacuum-the vapour motion. Let it be 
assumed that the vapour may be considered an 
ideal gas of a constant adiabatic exponent 7. 
Possible departures from this assumption will be 
discussed further. Gas expansion into vacuum 
occurs in a rarefaction wave. Such flows are well 
studied, and their properties are given in detail, 
for example in [5, 61. One-dimensional vapour 
expansion will be considered for definition 
purposes. Such motion is similar and represents 
a centered rarefaction wave. If the conditions at 
the surface of the solid phase are steady (or vary 
rather slowly), then near the surface of the solid 
the gas velocity should be equal to the local 
sound velocity [5, 61. It is easy to understand 
that at the interface itself the condition under 
which the mass vapour velocity is equal to the 
velocity of sound may not be rigorously fulfilled. 
For this the well-known fact is sufficient to be 
noted that molecules moving from a solid 
surface have a Maxwell velocity distribution at 
a temperature equal to the surface temperature 
(molecules moving to a surface have another 
distribution; see below). It is possible to show 
that at the surface the gas velocity is not equal 
to that of propagation of small disturbances. In 
addition, it should be noted, that immediately 
near the surface of a solid the velocity distribu- 
tion of molecules essentially differs from the 
equilibrium distribution, therefore, for the points 
near the surface, in general, there is no meaning 
in speaking about hydrodynamic boundary 
conditions which assume local equilibrium. 

The equilibrium distribution is established at 



180 A. V. LUIKOV. T. L. PERELMAN and S. I. ANISIMOV 

a distance of several mean free paths of molecules 
from the surface; however, as will be shown 
below, the parameters of this distribution 
essentially differ from the values applying at the 
surface. For these values to be defined, the 
kinetic equation for a “non-hydrodynamic” 
layer near a phase boundary has to be solved. 

It should be noted that equilibrium distribu- 
tion parameters may be calculated with the aid 
of the thirteenth-moment approximation. How- 
ever, in this case such an approach is hardly 
justified. Indeed,’ from the statement itself it is 
clear that the thickness of a “non-hydro- 
dynamic” layer is several lengths of a free path, 
the gas state sharply changing in this region. In 
this case the ordinary procedure for the approxi- 
mate solution of the Boltzmann equation may 
not be used. Such a case is similar to that of a 
strong shock wave (more precise, “strong shock 
wave of rarefaction”) and for the Boltzmann 
equation to be solved, it is natural to use the 
method usually adopted for considering a 
structure of strong shock waves [8, 91. This 
method uses a distribution function which 
represents the superposition of equilibrium 
distributions in front of and behind a shock 
wave with co-ordinate dependent coefficients. 
To substantiate such a choice of the distribution 
function on physical grounds one usually refers 
to a small width of a non-equilibrium zone, 
inside which are mainly molecules of equilibrium 
distributions in front of and behind the zone. 
For volumetric planes which are co-ordinate 
dependent to be determined, the Boltzmann 
equation is reduced to a differential one by the 
variational method or the method of moments 
[8, 91. The approach described, although not 
mathematically rigorous, nevertheless corres- 
ponds well to the essence of the problem both 
in the case of a strong shock wave and in the 
case under consideration. 

In accordance with the aforesaid, for the 
distribution function the following approximate 
expression is taken 

where 

f+(3 v, > 0 
fA3 = 

KGl v, < 0 

(151 

The function g(x) and the parameters /I, n,, ul, T, 
are to be determined. 

For their determination there are the Boltz- 
mann equation and the relation 

U, = C(T,) (16) 

expressing the equality between a mass gas 
velocity and the sound velocity at the boundary 
of the region where hydrodynamics is valid.? 
From the Boltzmann equation 
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follow laws of conservation of flows of mass, 
momentum and energy 

~di?Jx,iYlvv, = C, 

~di$(x,iYlu; = C2 

j di;flx, it) u,v* = C, 1 

(181 

Relations (161 and (Ml are sufficient to deter- 
mine the parameters n,, T,, u1 and /I which 
completely characterize the hydrodynamic 
boundary conditions. Integration of equations 
(18) using equation (141 leads to the following 
system of equations 

= n,u,[l + &,(M)], 

t Relation (16) ensures steady-state conditions for the 
kinetic problem under consideration. 
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(19) 

where 

1 
cp3bw = j 

[l + cw2)] e-M2 

~4 J(n) 

- (1 +&)erfcMj 

M=%J(Z&)=J($ 

03 

erR x = -& x e-” dt. 
s 

(20) 

Boltzmann’s equation (17) should be solved 
to find the function g(x). In our case the function 
g(x) is necessary only to assess the size of the 
non-equilibrium region. Owing to this fact, ex- 
pressions such as cfo(x,i?) - fl/z may be used 
for the collision term. The calculations made by 
the variational method for such a collision term 
give the width of a non-equilibrium zone equal 
to the order of two mean free paths. Owing to 
this fact it is necessary in equation (20) to take 
y=$and M= Jz since at several mean free 
paths the internal degrees of freedom (if these 
exist) and the degree of condensation remain 
invariable. 

Solving the system of equations (14l-(191 one 
obtains /I = 6.291, Ti = 0.67 T and n, = 0.31 no. 
Hence it is easy to calculate all the remaining 
hydrodynamic variables at the sound point It is 
of interest to note the magnitude of the flow of 
molecules condensing at the surface of a solid. 
Assuming that the adhesion coefficient is unity 

(this is valid for metal@, we obtain J_(J+ = 0.18, 
i.e. 18 per cent of all molecules evaporated 
return to the surface. 

The concentration of vapour molecules at the 
surface can also be calculated 

n(O) = fdiJflO,Zl = &no + /Ini erfc M, = 0.67 no. 

Obviously it is less than the concentration of 
saturated vapour having a temperature T,. It is 
easy to show that at the sound point the con- 
centration of vapour molecules may be higher 
than that of the saturated vapour. Indeed 

POsound nOsound -=---xexp [-&+&I 
PO 

“=exp[$(-l+?)]. (221 

and the vapour will be saturated if 0.31 no > 
nosound, i.e. To < 0’4 I/k. This case iS typiCal. 

Thus when expanding vapour into vacuum, 
supersaturation occurs near the surface and 
condensation should take place. This process 
will somewhat change the structure of a rare- 
faction wave. First of all, it ceases to be “similar” 
since there will appear a characteristic length 
determined by a finite condensation rate. Sec- 
ondly, expansion (even at an infinitely large 
condensation rate) will already be described not 
by Poisson’s adiabatic curve but by a “conden- 
sation” curve. The qualitative analysis of the 
problem of a rarefaction wave with condensa- 
tion is given in [7]. If the initial supersaturation 
is sufficiently high, then condensation takes 
place as an equilibrium process and then, with 
a decrease in volumetric concentration of 
vapour molecules, there occurs freezing of the 
process and further expansion is described by 
Poisson’s adiabatic curve. 

3. PROBLEM ON HEAT 
CONDUCTION IN A SOLID 

In the problem under consideration obviously 
there exist two limiting regimes, whose choice is 
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determined by the conditions of heating of the 
solid: (1) regime in which the velocity of the 
evaporation front is determined by kinetics and 
(2) regime in which this velocity is determined 
by heat conduction. 

Consider the first case. Its typical conditions 
are being created when evaporating a strongly 
absorbing solid under the action of radiation 
flow. Consider a one-dimensional steady-state 
problem. Let a radiation flow full on a surface 
(x = 0) of a solid x < 0 a part q of which is Finally 
absorbed. In a co-ordinate system fixed to the 
phase boundary, the equations of the problem 
are of the form 

2 

which follows from the previous paragraph of 
the present section (the heat capacity of a solid 
is 3R according to the law of Dulong and Petit). 
To transform equation (24) note that nisi = nTu 
where nT is the concentration of the solid phase, 
m is the mass of a molecule, t‘ is the velocity of 
the evaporation front; moreover, 

10 kT, 
= ---- 3 2 2.2. (25) 

3 111 

(261 

-Xx ;=. = 4 - 4’ 
(23) ~ , 

T(- co) = 0. J 
Here T is the temperature, x and a are the 
thermal conductivity and thermal diffusivity, / 

d ,- 4 

noTo JCkT/2rcml 

u = n,[l + Phi]’ 

Upon integration of equation (23) 

On satisfying the boundary condition at z = 0, 
the equation for determination of To is obtained 

1,221 q = n,(To,@$J + 2.22). 

Upon solving this equation the velocity of the 
evaporation front is determined from the equa- 
tion 

4 

” = n,(lm + 2.2 kT,)’ 
(2% 

FIG. 1. 

respectively; q’ is the density of the energy flux 
consumed by evaporation; z = x - ur. For q’ 
it is possible to write the expression 

Consequently, the velocity of the evaporation 
front o is directly proportional to the specific 
heat flux. To compare the result obtained with 
the classical Stefan solution, data are presented 
on the rate of movement of the evaporation 
front obtained by solving heat conduction 
problems. From Stefan’s solution it follows that 
the evaporation front propagates according to 
the law r = /I Jz where /I is a constant co- 
efficient which depends on thermophysical 
oronerties of the solid ll(r161. The rate of 
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propagation of the evaporation front will be 

u = -& = g?t-3. 

The specific heat flux will be equal to 

(30) 

9= 

where uT is the thermal diffusivity of the solid 
(uj- = R,,‘p,C,). 

From equations (30) and (31) it follows 

P(Jd erf W JUT) 
’ = 2,/(R,C,p,) CT, - To) 

(32) 

i.e. the rate of propagation of the evaporation 
front u is directly proportional to the specific 
heat flux q, as in equation (29), however, the 
factor of proportionality depends upon thermo- 
physical properties of the solid (RT, Cn pT), the 
evaporation front temperature T, and the 
ambient temperature Tn Experimental data 
confirm relation (30) and, consequently, the 
relationship between v and q. 

Thus, the qualitative dependence between the 
rate of propagation of the evaporation front and 
the heat flux supplied is the same, irrespective of 
the regime of heat sublimation. However, the 
mass-transfer mechanism and thermodynamic 
properties of a vapour on the solid surface and 

near it are essentially different. This explains the 
considerable disagreement between the experi- 
mental and predicted data for the Nusselt 
numbers if the latter are confirmed by the 
formulae of classical heat transfer between a 
solid surface and an ambient medium. 
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Abstract-The correct formulation of the problem on evaporation of a solid into vacuum is considered. 
Basic evaporation characteristics are found. 

It is shown that for some regime parameters the evaporation rate is determined by true kinetics of phase 
change (solid-vapour). There occurs a rarefaction wave, at the front of which vapour supersaturation takes 
place. TIie vapour pressure at the solid surface is less than the saturation vapour pressure at a given 

temperatures of the solid. 

EVAPORATION D’UN SOLIDE DANS LE VIDE 

RCum&On considtre la formulation correcte du probl&me de l’kvaporation d’un solide dans le vide. 
On trouve les caractkistiques fondamentales de l’bvaporation. 

On montre que pour quelques parambtres de rkgime, le taux d’tvaporation est dCtermint par des 
cinQiques de conversion de phases (solide-vapeur). Une onde de rartfaction prend place au devant de 
laquelle existe un front de vapeur sursaturbe. La pression de vapeur d la surface du solide est infbrieure g 

celle de la vapeur satur&e pour la temptrature du solide. 
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VERDAMPFEN AUS DEM FESTEN AGGREGATZUSTAND IN EIN VAKUUM 

Zusammenfassang-Die Arbeit behandelt die richtige Deutung des Problems der Verdampfung aus dem 
Festen Ag~e~~ustand in ein Vakuum. Dabei wnrden die grundlegenden Ve~ampfungs~har~~erist~ken 
gefunden. 

Es wird gezeigt, dass fiir einige Bereichsparameter die Verdampfungsrate durch die reine Kinetik der 
Phasenumwandlung bestimmt wird. Es tritt dort eine Verdiinnungswell auf, an deren Front der Dampf 
eine oberstittigong aufweist. Der Dampfdruck an der festen Oberfllche ist kleiner als der des geslttigten 
Dampfes bei einer gegebenen Temperatur. 


